Define the number " e "

Euler's number

The number e is defined as the number that the expression

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n} \tag{2}
\end{equation*}
$$

approaches as $n \rightarrow \infty$. In calculus, this is expressed using limit notation as

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Table 6

n	$\frac{1}{n}$	$1+\frac{1}{n}$	$\left(1+\frac{1}{n}\right)^{n}$
1	1	2	2
2	0.5	1.5	2.25
5	0.2	1.2	2.48832
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
1,000	0.001	1.001	2.716923932
10,000	0.0001	1.0001	2.718145927
100,000	0.00001	1.00001	2.718268237
$1,000,000$	0.000001	1.000001	2.718280469
$1,000,000,000$	10^{-9}	$1+10^{-9}$	2.718281827

\boldsymbol{e} (Euler's Number)

\square

The number \boldsymbol{e} is a famous irrational number, and is one of the most important numbers in mathematics.

The first few digits are:

$$
2.7182818284590452353602874713527 \text { (and more ...) }
$$

It is often called Euler's number after Leonhard Euler.

And Euler is spoken like "Oiler".
\boldsymbol{e} is the base of the Natural Logarithms (invented by John Napier).
\boldsymbol{e} is found in many interesting areas, so it is worth learning about.

Calculating

There are many ways of calculating the value of \boldsymbol{e}, but none of them ever give an exact answer, because \boldsymbol{e} is irrational (not the ratio of two integers).

But it is known to over 1 trillion digits of accuracy!
For example, the value of $(1+1 / \mathrm{n})^{\mathrm{n}}$ approaches \boldsymbol{e} as n gets bigger and bigger:

n	$(1+1 / \mathrm{n})^{\mathrm{n}}$
1	2.00000
2	2.25000
5	2.48832
10	2.59374
100	2.70481
1,000	2.71692
10,000	2.71815
100,000	2.71827

Another Calculation

The value of \boldsymbol{e} is also equal to $1 / 0!+1 / 1!+1 / 2!+1 / 3!+1 / 4!+1 / 5!+1 / 6!+1 / 7!+\ldots$ (etc)
(Note: "!" means factorial)
The first few terms add up to: $1+1+1 / 2+1 / 6+1 / 24+1 / 120=2.718055556$
And you can try that yourself at Sigma Calculator.

Remembering

Or you can remember the curious pattern that after the " 2.7 " the number " 1828 " appears TWICE:

2.718281828

And following THAT are the angles $45^{\circ}, 90^{\circ}, 45^{\circ}$ in a Right-Angled Isosceles (two equal angles) Triangle:

2.718281828459045

(An instant way to seem really smart!)

Advanced: Use of \boldsymbol{e} in Compound Interest

Often the number \boldsymbol{e} appears in unexpected places.
For example, \boldsymbol{e} is used in Continuous Compounding (for loans and investments):

$$
e^{r-1}
$$

Why does that happen?

Well, the formula for Periodic Compounding is:

$$
\begin{gathered}
\mathrm{FV}=\mathrm{PV}(1+\mathrm{r} / \mathrm{n})^{\mathrm{n}} \\
\text { where } \mathbf{F V}=\text { Future Value } \\
\mathbf{P V}=\text { Present Value } \\
\mathbf{r}=\text { annual interest rate (as a decimal) } \\
\mathbf{n}=\text { number of periods }
\end{gathered}
$$

But what happens when the number of periods heads to infinity?
The answer lies in the similarity between:

$$
(1+\mathrm{r} / \mathrm{n})^{\mathrm{n}} \quad \text { and } \quad(1+1 / \mathrm{n})^{\mathrm{n}}
$$

Compounding Formula
\boldsymbol{e} (as n approaches infinity)
By substituting $\mathbf{x}=\mathbf{n} / \mathbf{r}$:

- \mathbf{r} / \mathbf{n} becomes $\mathbf{1 / x}$ and
- \mathbf{n} becomes $\mathbf{x r}$

And so:

$$
(1+\mathrm{r} / \mathrm{n})^{\mathrm{n}} \quad \text { becomes } \quad(1+(1 / \mathrm{x}))^{\mathrm{xr}}
$$

Which is just like the formula for \boldsymbol{e} (as n approaches infinity), with an extra \mathbf{r} as an exponent.
So, as \mathbf{x} goes to infinity, then $(1+(1 / x))^{\mathrm{xr}}$ goes to $\mathrm{e}^{\mathbf{r}}$
And that is why \boldsymbol{e} makes an appearance in interest calculations!

Transcendental

e is also a transcendental number.

